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Abstract. The percolation thresholds andthe fractal cluster structures for continuum models 
of percolation with uniform (CMI) and variable radius (CMZ) distributions of discs and 
spheres are investigated and compared with the results of ordinary lattice percolation. 
Configurations of up to 250000 discs (2 dimensions) and LO0000 spheres (3 dimensions) 
are numerically simulated. In two dimensions we find distinctly different percolation 
concentrations for models CM1 and CM2. In the three-dimensional systems the percolation 
concentrations for both models cannot be distinguished within our limits of accuracy. The 
fractal dimensions of the cluster hull, surface and volume are the same as in the correspond- 
ing lattice models. The Harris criterion for the continuum percolation problem is confirmed 
by our simulation. 

1. Introduction 

Continuum percolation models have attracted increasing attention as the physical 
realization of percolating structures which are insensitive with respect to the microstruc- 
ture (e.g. the lattice of a solid). Examples for such systems are the pore space in 
sedimentary rocks (Thompson et al 1987) and the cluster structures arising in the 
droplet model of first-order phase transitions (Binder and Stauffer 1976). In the latter 
example the phase transition is determined by the creation of critical nuclei of the 
stable phase and the growth of these nuclei until they impinge to one another forming 
larger and larger clusters. The largest cluster percolates in the critical stage of the 
transition. In the process of homogeneous nucleation and isotropic growth the clusters 
consist of overlapping discs (in two dimensions, ZD) or spheres ( 3 ~ )  with variable radii. 

Lattice percolation models have been investigated frequently and the critical 
exponents at the percolation threshold and the fractal properties of clusters are 
suggested to be universal for various models and lattices in two and three dimensions 
(for a review see Stauffer 1985). Less work has been done for continuum models. Two 
typical radius distributions W ( r )  for the cluster forming nuclei are of interest. In the 
first model (CMt), all discs or spheres are of one and the same size R,, W ( r ) =  
n,S(r - R"). no denotes the density of nuclei. This model describes the cluster structure 
growing at first-order phase transitions where nucleation takes place instantaneously 
before the onset of growth. The second model (CM2) is characterized by a constant 
size distribution W ( r ) =  W,,, r <  R,, which arises in the process of homogeneous 
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nucleation and growth (Christian 1965). The model CM2 applies to various phase 
transformations in materials science and metallurgy. 

Experimentally, percolating structures are verified by the observation of quenched 
silica aerogels (Devreux et aI 1990), the aggregation of colloidal gold particles (Liu 
et nI 1990), and high pressure phase separation in solutions (Lorenz et a1 1991). 

The percolation threshold, critical exponents and cluster structures for CMl are 
determined by series expansion (Domb 1972, Haan and Zwanzig 1977), Monte Carlo 
simulation (Roberts 1967, Pike and Seager 1974, Gawlinski and Stanley 1981), renor- 
malization group approach (Vicsek and KertCsz 1981, KertCsz and Vicsek 1982) and 
even more sophisticated methods (Rosso 1989). The results lead to the conjecture that 
the critical exponents at the percolation point and the fractal cluster structures are the 
same as in the lattice models and the continuum and lattice percolation models belong 
to one and the same universality class. The non-universal behaviour of specific quan- 
tities like the ratio of the susceptibilities above and below the percolation threshold, 
however, is in discussion (Balberg 1988, Lee 1990). 

For a correct calculation of critical properties the percolation threshold density 
has to be determined with high accuracy. It is convenient to use the volume fraction 
@ of the growing phase as the density parameter in order to compare the results for 
continuum models with different radius distributions. Q, is related to the model para- 
meters by @ = 1 -exp{-c,n,R$ and @ = 1 -exp{-c, W,R;+'} for CMI and CM2, 
respectively (Christian 1965). d denotes the spatial dimension and the e, are constants 
which depend on the model and the shape of the nuclei. Several approximation 
techniques applied to the models CMl and CM2 exhibit nearly similar threshold values 

in two (Pike and Seager 1974, KertCsz and Vicsek 1982) as well as in three dimensions 
(Pike and Seager 1974). It is not clear, however, whether or not the threshold values 
are independent of the radius distribution. Phani and Dhar (1984) have shown that at 
least for distributions of discs with two different radii R, and RZ the threshold value 
for the onset of percolation differs distinctly from that of equally sized discs as far as 
R, /R ,  xO.35. KertCsz and Vicsek (1982) suggested the validity of the Harris criterion 
for the continuum percolation models considering the variation of the radius distribu- 
tion as an additional randomness. Then, the critical percolation exponents and the 
fractal dimensions should be equal for the models CM1 and CM2. It is of special 
interest to answer the question if the threshold value @< represents a further universal 
quantity. 

In the present paper we investigate the onset of percolation in the continuum 
models discussed above by a numerical simulation. We concentrate on the comparison 
of universal and non-universal quantities at QC for the models CMI and CM2 in two 
and three dimensions and the fractal properties of the cluster structures. 

2. Numerical procedure 

The simulation of the random system is performed using an extended and refined 
algorithm discussed previously (Orgzall and Lorenz 1988, Lorenz 1989, Orgzall and 
Lorenz 1992). A configuration is generated by randomly placing discs or spheres into 
a unit volume until the volume fraction @ is covered. The radius distribution is chosen 
according to CMl or CM2. The cluster structure is evaluated numerically using the 
technique of Hoshen and Kopelman (1976) extended to continuum problems by 
Gawlinski and Stanley (1981). Thus, systems of up to 250 000 discs and 100 000 spheres 
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were simulated on a RISC processor system. After labelling the various clusters in the 
system, the volume and the surface of each individual cluster are determined numeri- 
cally within a relative error of less than 0.5%. In the two-dimensional models the outer 
surface (hull) of the clusters is calculated by an exact integration. The percolation 
threshold is determined by considering the extension of the largest cluster in the 
configuration using periodic as well as non-periodic boundary conditions. 

In order to characterize the fractal properties, a measure of the linear ‘size’ of the 
cluster has to be defined. Although this definition is somewhat arbitrary, there exist 
arguments (Stauffer 1985) that in the scaling region (i.e. for large cluster :sizes) the 
various definitions are equivalent. In our calculations three different measures were 
used and compared as follows. 

(i) The average over the maximum extent of the cluster along the coordinate axes 

where d denotes the dimension of the system. 
(ii) The radius of gyration of the cluster hull (ZD) 

where S and 5 denote the size and the centre of mass coordinates of the hull, 
respectively. 

(iii) The mean square radius given by 

Tj is now the centre of mass of the cluster volume K 
We have compared the values calculated according to the definitions (i) to (iii) 

and found a proportionality of R,, R, and R, for large cluster sizes in agreement with 
the scaling prediction. In the following the suffix is suppressed and the cluster size is 
denoted by R. 

3. Percolation threshold ‘Bc 

The best known values @< for the onset of percolation have been determined for the 
model C M 1  in two dimensions as @~‘‘=0.6766~0.0005~~(Rosso 1989) and in three 
dimensions as @~~’=0 .294 t t0 .003  (Lee 1990). In the present calculation we estimate 
the percolation densities simulating systems up to 250 000 discs and 100 000 spheres. 
@< is determined by extrapolating the percolation densities for finite systems of length 
L to the infinite system according to the scaling law (Gawlinski and Stanley 1981, 
Stauffer 1985) 

lCa,(L) -@c(ffi)l - L-”” (4) 

where Y is the critical exponent at 
@.,(L) is derived from the percolation probability PL(Q)  for fixed L. This probability 

is defined as the ratio of the number of percolating systems to the total number of 

and L is the length of the system. 
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simulations for given @ and exhibits a sigmoidal shape between 0 and 1. From a large 
number of computer experiments ( N  = 2000) for fixed L and Q, the data are derived 
and fitted to a smooth function PL(Q). Testing various functions within the limits 
0.05s PL(@)s0 .95  the best fit is obtained using 

PL(@) =$1 +tanh-l[b(@-@.)]}. ( 5 )  

The tanh-' denotes the inverse hyperbolic tangent which shows the sigmoidal depen- 
dence on @. Equation (5) is a convenient fit function since it contains only two fit 
parameters. Comparing the results with those from alternative functions containing 
up to four parameters we find the same values of Qc( L )  within the statistical uncertainty. 
With (5) the percolation threshold @<(L) is derived at PL(QC) =0.5. It is assumed that 
this definition does not influence the extrapolated value @lc(m). For a better extrapola- 
tion @,(L) is determined taking into account periodic as well as non-periodic boundary 
conditions. Naturally, systems with periodic boundary conditions yield a larger Qp,(L) 
and the difference vanishes for L+m. 

In order to test the accuracy of the procedure described above we investigated the 
model CMI in two dimensions. The results for @,(L) are given in figure 1 (lower curve 
set). The extrapolation according to (4), however, is problematic since the function 
(4) yields a nearly equally good fit to the numerical data for a broad set of pairs 
{mC, U}. The corresponding curves @.,(VI are shown in figure 3(a) for periodic and 
non-periodic boundary conditions. Obviously, the curves for both types of boundary 
conditions have a common intersection point which is chosen as the best fit of the 
parameters and U to equation (4). This procedure yields @Jm) =0.6764*0.0009 
and v=1.37*0.07. The value of is in excellent agreement with that of Gawlinski 
and Stanley (1981) (0.676i0.003) and themost accuratedetermination by Rosso (1989) 
with a gradient percolation technique, aC = 0.6766*0.0005. Although the variance in 
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Figure 1. Finite size scaling plot of the percolation threshold value Oc for the continuum 
models CM1 (lower curve set) and CMZ in two dimensions. The symbols (X)  and (+) 
denote the results obtained with periodic and non-periodic boundary conditions, rerpec- 
tively. The lines represent a fit to equation (4). The typical variance of the data for small. 
intermediate. and large systems are marked by the vertical bars. 



Cluster structures in continuum percolation models 4715 

our estimate is somewhat larger compared with the work of Rosso (1989) the accuracy 
of our procedure is further enhanced by the simulation of periodic and non-periodic 
boundary conditions and the coincidence of both extrapolated threshold values. The 
critical exponent U obtained by our fit is comparable with the presumably ex,act value 
of $ and with other simulations (e.g. KertCsz and Vicsek 1982, U =  1.3410.07). Since 
the dependence of Qc on U is very weak (figure 3(a)) the percolation threshold is 
determined with appreciably higher accuracy than the exponent U. 

From the above discussion we conclude that the simulation method can be applied 
with sufficient accuracy to the determination of the percolation thresholds in continuum 
models with a radius distribution. In the following we restrict our investigations to the 
model CM2. The results in two dimensions are shown in figure 1 (upper curve set). 
The upper line represents the data using periodic boundary conditions. Analogous to 
the extrapolation for CMl the data for Qc(L) are fitted to the equation (4) and 
extrapolated to L+ m. The length scale of L is defined by L = 1/ Ro, where Ro represents 
the radius of largest disc. The statistical variation of the data for QJL) is dependent 
on the system size. It slightly increases from 10.0015 for the smallest systems (several 
hundred discs) to *0.003 (250000 discs). The percolation density and the critical 
exponent are obtained as Qc(m) = 0.6860* 0.0012 and U = 1.28 i 0.08, respectively. 
Within the error limits the exponent Y is equal to that estimated for model (CM1 and 
to the exact exponent U =$. However, the value of @< is clearly different from the 
critical area fraction in the model with equally sized discs (CMl) given by .the lower 
curve set in figure 1. Our estimate of Qc is more accurate than previous ones for model 
CM2. Pike and Seager (1974). obtained a value of 0.68 0.02 for a system of 4.000 discs 
using non-periodic boundary conditions which is comparable with our estimate for 
the same system size (figure 1). However, Qc(L)  increases with L for non-periodic 
boundary conditions resulting in a larger limiting value. The variation of Q J L )  is 
considerably smaller for periodic boundary conditions so that @Jm) is well approxi- 
mated even by small systems. KertCsz and Vicsek (1982) used a Monte Carlo renonnaliz- 
ition group approach and obtained 0.7010.02. Due to the increased accuracy of our 
results we conclude that the percolation thresholds for models CMl  and CM2 are 
different and the suggestion that Qc might be independent of the radius distribution 
in continuum models of percolation is ruled out in two dimensions. This result is in 
qualitative agreement with the calculations of Phani and Dhar (1984) for their model 
including discs of two different radii. Because of the considerably larger systems and 
the finite size scaling procedure applied in the present study we reach an order of 
magnitude higher accuracy in determining @<. 

The results for the three-dimensional model CM2 are presented in figure 2. Contrary 
to the two-dimensional case Qp,(L) decreases with L for both periodic and non-periodic 
boundary conditions. Obviously, the scaling regime is limited to large systems only 
whereas for smaller L the data systematically deviate from the scaling law (4). A 
crossover from non-scaling behaviour to the scaling regime is observed at 1/L=0.003. 

The data in the scaling regime are fitted to (4) in the same way as in two dimensions. 
The corresponding curves Qc( U) along which the goodness of the fit is nearly constant 
are given in figure 3(b) for periodic and non-periodic boundary conditions. The two 
parameters at the intersection point of both curves are estimated as 0,=0.297*0.006 
and u=0.87+0.07. The value of U is in good agreement with 3~ lattice (Stauffer 1985, 
~ ~ 0 . 9 )  and continuum models (Balberg and Binenbaum 1985, u=O.83 iO.09, model 
CMl). The value of Qc determined here has to be compared with that of ,Pike and 
Seager (1974), @p.=0.303. This larger value is probably due to the smaller system (SO00 
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Figure 2. Percolation threshold QC for the model CM2 in three dimensions. The symbols 
have the same meaning as in figure 1. The arrow denotes the percolation threshold for 
model CMI. 

spheres in comparison with 100 000 spheres in the present simulation) simulated by 
thzm since GP,(L) decreases with L. The critical volume fraction as determined for 
CM2 is only slightly larger than that obtained for equally sized spheres by Pike and 
Seager (1974), @,,=0.295+0.02, Haan and Zwanzig (1977), @,=0.295?~0.04, and the 
very precise calculation of Lee (1990), @< = 0.294*0.003. The difference of the percola- 
tion thresholds for the models CMl and CM2 is smaller than the error limits and both 
values cannot be distinguished in three dimensions. 

4. Fractal cluster structures at CP, 

Using the critical values @< estimated in the previous section we determine numerically 
the geometric properties (volume, total surface, hull, anisotropy etc) of the clusters as 
a function of their sue  R (according to the definitions (1)-(3)). Thereby, we use 
dimensionless quantities dividing the volume by R t ,  surface and hull by I?;;-', and 
the cluster size by Ro. For both continuum models (CM1 and CM2) several lo5 clusters 
are evaluated and the results are averaged within equally divided intervals of the 
logarithm of cluster size, In R. The data are represented in a double logarithmic plot. 
By definition, the fractal exponents are given by the slope of this plot in the scaling 
region (i.e. in the limit of large cluster sizes). In this range a measure of the statistical 
error of the averaged data is given by the deviation of the data points from the straight 
line. In order to exclude an error due to the influence of smaller clusters (outside the 
scaling regime) we apply the following fit procedure. At first all data are fitted to a 
straight line. Then we systematically exclude the smallest clusters until the exponents 
remain unchanged. We find the same fractal exponents as in the lattice models in two 
and three dimensions. The results are given in more detail for the model CM2 in the 
following sections. 
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Figure 3. The functions a=(") along which the fit of the finite size data to the scaling 
relation (4) yields nearlythesame quality forsimlllations with periodic(p)andnon-periodic 
(n) boundary conditions. ( a )  Two-dimensional model CMI. ( b )  Three-dimensional model 
CM2. 

4.1. Two-dimensional model CM2 

In the scaling regime (i.e. for large clusters) the cluster volume as function of R is 
given by 

V-R"I (6) 

where the fractal exponent d,- is estimated according to the procedure outlined above 
(figure 4) as d, = 1.894+0.003 in excellent agreement with the best calculated values 
for lattice models including the presumably exact result d, =% (Stauffer 1985). 

The same exponent (within the statistical error) is obtained for the cluster surface 
S which establishes the well known proportionality of the surface and the volume of 
large clusters, 5'- V (Stauffer 1985). Similar!?, we see that the number of discs N 
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Figure 4. Double logarithmic plot of cluster volume versus cluster radius showing relation 
( 5 )  with an exponent d, = 1.894*0.003 (21) model). 

within a cluster is proportional to its volume, N - V even for very small cluster sizes. 
Both relations are shown in figure 5. The latter result gives the possibility of suppressing 
the time-consuming numerical calculation of the cluster volume, defining the cluster 
size R by equation (1) instead of (2) or (3). Then, with N - Rdf the exponent d,. can 
be determined simulating even larger systems. 

The cluster hull H (the surface without internal holes) is shown in figure 6 as 
function of R. The estimated exponent d,, =1.751*0.002 is very close to the exact 
value of for ZD lattice models (Sapoval et af 1985, Saleur and Duplantier 1987) and 
the value d,, = 1.75+0.02 determined by Ross0 (1989) for the model CMl.  

S N 

V 

Figure 5. Linear dependence of total surface S (0) and the number of discs N (+) on the 
cluster volume V, 1 1 )  model CM2. For convenience, all values arc reduced by a factor of 
IO'. The inset shows the deviation from the scaling relation S- V (dashed line) for 
intermediate cluster sizes. 
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In H 
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In R 

Figure 6. Double logarithmic plot of cluster hull versus cluster radius. The fractal exponent 
is given by dh = 1.751 +0.002 (Zu model). 

4.2. Three-dimensional model CM2 

According to figure 2 the scaling relation (4) is fulfilled only for rather large systems 
with l /L>  0.003. An analogous situation is observed for the fractal cluster properties 
(figure 7). The double logarithmic plot In V versus In R shows a crossover to the scaling 
regime at In R-2.2. The fit in the scaling region yields d, =2.512*0.012 as the fractal 
exponent for the cluster volume which is in very good agreement with the corresponding 
lattice exponents given by Stauffer (19851, d,  =2.5, and Adler et al (1990), d, = 
2.536zt0.047. 

As in ZD, the surface S and the number of spheres of a cluster are both proportional 
to the volume (figure 8). We have not evaluated the hull in 3~ because of numerical 

I" v 
12 I 

In R 

Figure 7. The same as figure 4 in three dimensions. The exponent d, is given by d, = 
2.512+0.012. 
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V 

Figure 8. The same as figure 5 in three dimensions. 

problems. In the two-dimensional model the hull can be measured by subsequently 
counting the sections between neighbouring knots (i.e. by calculating the intersections 
of the discs along the hull). In the three-dimensional continuum model the hull is 
topologically much more complicated and a suitable algorithm has not been found. 
However, from recent calculations on 3~ lattice models it is strongly suggested that 
the cluster hull grows with the same exponent as the volume (Bradley et al 1991). 

Finally, we have applied the numerical simulation technique also to the model 
CM1 (equally sized discs or spheres) and found within the error limits the same fractal 
exponents. Because of several recent papers on this model we omit a detailed discussion 
of our results. 

4.3. Corrections to scaling and cluster shapes 

The proportionality of cluster surface and volume is well accepted for large cluster 
sizes not only at aC but also above and below the percolation threshold (Stauffer 1985). 
For smaller clusters, however, corrections to the scaling law are expressed by the 
equation 

S - V - const VI (7) 

where the second contribution is assumed to behave like a common surface term at 
@ > i.e. c = 1 - I/d. For @<ae the value of 5 is unity. At the percolation threshold 
it is expected from the results of lattice models that 5 =U, with U"' =%and u3" =0.45 
(Stauffer 1985). In order to evaluate the exponent 5 at the percolation threshold 
we fir the cluster data to (7) according to the procedure outlined at the beginning of 
section 4 (inset in figures 5 and 8). For the continuum model CM2 we get in two and 
three dimensions 5"' = 0.234 and 53" =0.178, respectively. Both exponents are far from 
the expected value U as well as from the two limiting values below and above a,.. 
From a similar fit to (7) we get in the model CM1 c"' =0.256 and 53'' =0.366. While 
6'" is close to the corresponding value in the model CM2 there occur larger differences 
in three dimensions. The deviation of i from the lattice exponent U is somewhat 
surprising in the view of universality of continuum and lattice models. However, in 
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the present simulation the size of the clusters contributing to the scaling correction 
may be too small to reproduce the correct exponent U. Since (7) is valid only in the 
limit V +  CO even larger systems have to be simulated in order to evaluate this very 
sensitive quantity. 

Another point of interest is the shape of the clusters. We measure the anisotropy 
of a cluster by calculating its principal moments of inertia I,. An anisotropy factorf. 
is defined by the quotient of the smallest and the largest moment. For an isotropic 
cluster this factor is 1 whereas for a long and thin structure it tends to zero. To obtain 
a reliable estimate forf, we average over a large number of equally sized clusters. The 
resulting anisotropy factors are shown in figure 9 as functions of cluster size In R. For 
large sizes fo tends to a constant (0.4 for d = 2  and 0.5 for d = 3) well below the 
isotropic case (fa = 1).  From the data of figure 9 we conclude that large clusters up to 
the percolating cluster are anisotropic at a=. In order to estimate the anisotropy factor 
of the percolating cluster we have performed averages over the f , s  of percolating 
clusters only. The values obtained aref;, = 0.416 (ZD) and f;, = 0.503 ( 3 ~ ) .  For a better 
understanding of the cluster anisotropy the cluster shapes should be investigated below 
and above QC. 

O ' * l  . .  '- I 
I" R 

FIgure 9. The anisotropy factor fa as function of the logarithm of cluster radius R for the 
continuum model CMZ in two (left scale, lower data set) and three dimension:: (rjght scale, 
upper data set). The scatter of the,anisotropy at large radii results from the large configur- 
ational variance of fa. A well defined mean value is obtained only for averaging over a 
large number of equally sized clusters as can be seen for small radii. 

5. Conclusions 

The comparison of the fractal dimensions at the percolation threshold confirms the 
conjecture that continuum models with different radius distributions of nuclei belong 
to the universality class of the corresponding lattice models. This is also supported by 
recent work on the growth of Eden clusters on ZD lattices which can be extrapolated 
to the continuum model of percolation (Evans 1990). 
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The disorder due to varying radius distributions should be an irrelevant quantity 
according to the Harris criterion (Harris 1974). Comparing the results of both con- 
tinuum models CMl and CM2, we have shown that the Hams criterion is valid in the 
continuum percolation problem. 

The investigation of non-universal quantities shows small but distinct changes with 
the radius distribution in continuum percolation. The percolation thresholds QC for 
the models CM1 and CM2 differ only by a small amount in 3~ which is comparable 
with the accuracy of our analysis. However, in 2~ we can rule out an equality of Cp. 
for both models. At aC, the exponent 5 describing the deviations from the proportional- 
ity of surface and volume of smaller clusters deviates from the expected lattice exponent 
U. This open question should be investigated by more refined methods or simulations 
of even larger systems. The average shape of larger clusters at QC is anisotropic. This 
feature should be investigated in more detail above and below Q C .  
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